Super Proton-Proton Collider

TANG, Jingyu for the SPPC study group

Snowmass Agora on Future Colliders: Circular pp and ep Colliders

March 14, 2022, ZOOM

Outline

- Brief description on SPPC
- Key technologies and maturity
- How to reach the CoM energy goal
- Costs and cost risks
- Key beam physics challenges
- Ideal timeline
- Key parameters and input to the "ITF Table"

Brief description on SPPC

- SPPC (Super Proton-Proton Collider) is the second stage of the CEPC-SPPC project promoted by China
 - CEPC built first, as the precision measurements (Higgs, W, Z, and ttbar)(CoM: 240 GeV, 160 GeV, 90 GeV, 360 GeV)
 - SPPC the second (~100 TeV), focusing on energy-frontier research (BSM physics but also rare Higgs channels)
 - ep collision is also under consideration
- CEPC and SPPC will share the same collider tunnel of 100 km
 - Totally different machines
 - SPPC is a two-ring collider (CoM: 125 TeV), fed by an injector chain of four accelerators

- Two main detectors: @LSS3 and LSS7
- LSS1: collimation (CEPC detector)
- LSS2: rf stations
- LSS5: ejection (CEPC detector)
- LSS6: injection
- LSS4/LSS8: reserved for AA and ep

Ion beams possible

SS: Super Synchrotron

Beams from injector accelerators for various physics programs

To SPPC

Key technologies and maturity

- High-field superconducting magnets dipole and quadrupoles with high field quality: the most important technology, for both their availability and cost effectiveness
 - 20-T magnets far beyond state-of-the-art, needing longterm R&D efforts (15-20 years)
 - HTS or hybrid (LTS+HTS) magnets more promising in reaching 20 T
 - HTS especially iron-based (IBS) magnets much more cost effective than Nb₃Sn, but less mature
- Beam screen and vacuum: to prevent synchrotron radiation (~2.2 MW per beam) onto the cold vacuum chamber (2-4 K)
 - Beam structure: tackling vacuum pumping, electron cloud alleviation, low coupling impedance and mechanical sustaining of magnet quenches
 - Conceptual solutions available, far from maturity, needing serious R&D efforts

- Collimators: materials sustaining very high irradiation from primary protons and secondary particles, low impedance, needing significant improvements from LHC, modest maturity
- Crab cavities: high field, low impedance and compact space, will base on the experience at HL-LHC, modest maturity
- Injection/extraction magnets: powerful kickers with fast rise/fall time, superconducting septum magnets, modest maturity
- Efficient cryogenic plant and transmission: very high cryogenic heat load (magnets, beam screens, RF) → large contribution to total power consumption, modest maturity

How to reach the CoM energy goal

- Limitation factors to beam energy (62.5 TeV)
 - Circumference (~100 km)
 - − Fields of magnets (~20 T)
 - Powerful injector chain (Energy gain in collider < 20, injection energy to ~3.2 TeV)
 - Luminosity: sacrifice of luminosity with higher beam energy due to rapid increase on SR power (burden on beam screen), \rightarrow lower bunch population and luminosity $P \propto I_h \gamma^4$
- Intermediate run (37.5 TeV)
 - For higher luminosity, studying rare Higgs channels etc.
 - Magnetic field: 12 T
 - Bunch population increased: $1.5*10^{11}$ (vs $0.4*10^{11}$)
 - Integral luminosity increased by a factor of about 3

Costs and cost risks

- Difficult to have cost estimate, high risk
 - Assuming the 100-km tunnel (CEPC) reused: modest civil modifications;
 all land reserved from CEPC; about 27 km new tunnels for SPPC injectors
 and transport lines
 - Large uncertainty in magnets: hopeful IBS successful, much cheaper than Nb₃Sn
 - Manpower in China will increase largely (a few times) if China will enter rich countries club in 20 years
 - Other key technologies successfully resolved
- We hope
 - SPPC construction cost be in the range of 10-15B US\$ (2021)
- It is argued
 - SPPC construction will not start until key technologies available and cost affordable.

Key beam physics challenges

Collider rings

- Lattice: in particular IR regions, compatibility with CEPC
- Beam-beam effects and luminosity leveling: push B-B parameters to the limit (with compensations) to increase luminosity

- Collimation and beam abort: huge stored energy in beams and beam loss power when in collision, machine safety
- Impedance and instabilities: difficult to manage impedance of 100 km ring, in particular beam screens, large number of collimators

Injector chain

- All high beam power machines (MW level, or stored energy in beam >50 MJ)
- Producing the required beam properties for the collider rings: emittances, bunch population, bunch spacing, bunch trains, cycling period, etc.

Ideal timeline

- SPPC is the second stage of the CEPC-SPPC project, assuming
 - CEPC being approved and built within the next decade
 - 20-T magnets available and cost effective in 15-20 years
- SPPC study and construction
 - CDR (2030-2034), TDR (2035-2028), Construction (2042-2048)

Key parameters and input to the "ITF Table"

	SPPC
CoM Energy and upgrades (TeV)	125 (intermediate run: 75)
Peak luminosity (10 ³⁴ cm ² s ⁻¹)	13
IP difficulties	2 IP; dynamic beta*: 0.75-0.25 m; L*: 36 m; crab cavities; MDI: beam-loss background
Length of the facility (km)	~127
Length of new accelerators (km)	~127
Beam parameters challenges	Bunch: $0.4\text{-}1.5*10^{11}$, 25 ns; Emit: $1.2~\mu\text{m}$; I_{b} : $0.2\text{-}0.7~\text{A}$
Special technologies	IBS magnets, beam-screen
R&D/validation (yrs needed);	>15 yrs (magnets)
Construction start year	2042
Cost	10-15B US\$
Level of maturity	1: Significant R&D needed
Env. Issues: AC power, resources (Nb, LHe)	Order of 400 MW

Summary

- SPPC is the second stage of the CEPC-SPPC project, a discovery machine in energy frontier (125 TeV CoM), aiming for two decades from now
- Key technologies such 20-T magnets require long-term R&D efforts

Thanks for your attention!